Volodina-vasilisa.ru

Антикризисное мышление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ временных рядов

Анализ временных рядов

Составляющие временного ряда

При анализе временного ряда выделяют три составляющие: тренд, сезонность и шум. Тренд — это общая тенденция, сезонность, как следует из названия — влияния периодичности (день недели, время года и т.д.) и, наконец, шум — это случайные факторы.

Что бы понять отличие этих трёх величин, смоделируем функцию расстояния от земли до луны. Известно, что в среднем луна каждый год отдаляется на 4 см — это тренд, в течение дня луна совершает оборот вокруг земли и расстояние колеблется от

405400 км — это сезонность. Шум — это «случайные» факторы, например, влияние других планет. Если мы изобразим сумму этих трёх графиков, то мы получим временной ряд — функцию, показывающую изменение расстояния от земли до луны во времени.

Тренд. Методы сглаживания

Методы сглаживания необходимы для удаления шума из временного ряда. Существуют различные способы сглаживания, основные — это метод скользящей средней и метод экспоненциального сглаживания.

Метод скользящей средней

Идея метода скользящего среднего заключается в смещении точки графика на среднее значение некоторого интервала. В качестве интервала берут нечётное количество участков, например, три — предыдущий, текущий и следующий периоды, находится среднее и принимается в качестве сглаженного значения:

У данного метода есть проблема: случайное высокое или низкое значение сильно влияют на скользящую линию. В качестве решения были введены веса. Для распределение веса используют оконные функции, основные оконные функции — это окно Дирихле (прямоугольная функция), В-сплайны, полиномы, синусоидальные и косинусоидальные:

Минусы использования скользящей средней — это сложность вычислений и некорректные данные на концах графика.

Как видно из графика, увеличение n выдаёт более плавную функцию, таким образом нивелируя более мелкие колебания во временном ряду. Обратите внимание, что при сглаживании не имеет значения, совпадает график среднего с графиком данных или нет, целью является построение правильной формы.

Метод экспоненциального сглаживания

Метод экспоненциального сглаживания получил своё название потому, что в сглаженной функции экспоненциально убывает влияние предыдущего периода с неким коэффициентом чувствительности α. Сглаженное значение находится как разница между предыдущим действительным значением и рассчитанным значением:

Коэффициент чувствительности, α, выбирается между 0 и 1, в качестве базиса используют значение 0,3. Если есть достаточная выборка, то коэффициент подбирается путём оптимизации.

Методы прогнозирования

Методы прогнозирования основываются на выявлении тенденции во временном ряду и последующем использовании найденного значения для предсказания будущих значений. В методах прогнозирования выделяют тренд и сезонность, в общем случае, все типы сезонности могут быть найдены последовательными итерациями. Например, при анализе данных за год, можно выделить сезонность времени года, а в оставшемся тренде найти сезонность по дням недели и так далее.

Двойное экспоненциальное сглаживание

Двойное экспоненциальное сглаживание выдаёт сглаженное значение уровня и тенденции.

Smooth — сглаживание, сглаженный уровень на период τ, sτ, зависит от значения уровня на текущий период (Dτ), тренда за предыдущий период (tτ-1) и рассчитанного сглаженного значения на предыдущий период (sτ-1):
sτ = αDτ + (1 — α)(sτ-1 + tτ-1) Trend — тенденция, тренд на период τ, tτ, зависит от рассчитанного сглаженного значения за предыдущий и текущий периоды (sτ и sτ-1) и от предыдущей тенденции:
tτ = β(sτ-sτ-1) + (1-β)tτ-1 Рассчитанные по данным формулам уровень и тренд могут быть использованы в прогнозировании:
D’τ+h = sτ + h·tτ

При расчёте, значения s и t для первого периода назначают s1 = D1 и t=0

Метод Хольт-Винтерса

Метод Хольт-Винтерса включает в себя сезонную составляющую, т.е. периодичность. Существуют две разновидности метода — мультипликативный и аддитивный. В отличие от двойного экспоненциального сглаживания, метод Хольт-Винтерса изучает также влияние периодичности.

Читать еще:  Индукция дедукция анализ

Общая идея нахождения значений сглаженного уровня, тренда и периодичности заключается в следующем: сглаженный уровень (s — smooth, иногда используют l — level) — это базовый уровень значений, тренд (t — trend) — это показатель скорости роста, разница между сглаженными значениями текущего и предыдущего периода. Для изучения периодичности (p — period), мы разбиваем данные на периоды размером k и выделяем влияние каждого элемента (1,2. k) периода на сглаженный уровень.

Для более точных расчётов вводится показатель обратной связи. В общем понимании, обратная связь — это влияние предыдущих значений на новые: например, когда Вы начинаете говорить, Вы регулируете громкость своего голоса в зависимости от того, что слышат Ваши уши — это и есть обратная связь.

Для начала расчётов, значения s, t и k, в самом простом виде, могут быть выбираны как sτ = Dτ, t = 0, p = 0.

Для прогнозирования используется следующая формула:

Мультипликативный метод Хольт-Винтерса

Мультипликативный метод отличается от аддитивного тем, что параметры, влияющие на периодичность и сглаженный уровень рассчитываются отношением:

Для прогнозирования используется следующая формула:

Метод Хольт-Винтерса в excel

Таблица для скачивания в форматах ods и xls.

Качество прогнозирования

Проверка качества прогнозирования возможна в случае наличия достаточной выборки и является важной проверкой на достоверность прогноза, для проверки и оптимизации значений α, β и γ необходимо построить прогноз на существующие данные, например, если у нас в наличии данные за пять лет и мы хотим предсказать следующий год, то необходимо построить модель на первых четырёх годах, проверить и оптимизировать коэффициенты для минимизации ошибки между прогнозом и данными на 5й год. После оптимизации модель может быть перестроена с учётом последнего периода для повышения точности, далее следует построение прогноза.

Методы оптимизации будут описаны в отдельной статье, ниже представлен пример прогнозирования методом Хольт Винтерса.

Анализ временных рядов

Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Поскольку условия ведения бизнеса изменяются с течением времени, предпринимателям и менеджерам для успешного ведения своей предпринимательской деятельности требуется предвидеть с той или иной степенью надежности будущие события. В период роста цен на энергоносители, промышленники должны уметь прогнозировать потребление электрической энергии

Анализ временных рядов — это анализ, основанный на исходном предположении, согласно которому случившееся в прошлом служит достаточно надежным указанием на то, что произойдет в будущем. Это также можно назвать проектированием тенденций.

Временные ряды и их характеристики

Временной ряд представляет собой последовательность данных, описывающих объект в последовательные моменты времени. В отличие от анализа случайных выборок, анализ временных рядов основывается на предположении, что последовательные данные наблюдаются через равные промежутки.

Существует две основные цели анализа временных рядов: определение природы ряда и прогнозирование, т.е. предсказание будущих значений временного ряда по настоящим и прошлым значениям. Обе цели требуют, чтобы модель ряда была определена и более или менее формально описана. Как только модель определена, с ее помощью можно интерпретировать рассматриваемые данные — например, использовать ее для анализа наличия сезонного изменения цен на товары. Затем можно экстраполировать ряд на основе найденной модели, т.е. предсказать его будущие значения.

Как и большинство других видов анализа, анализ временных радов предполагает, что данные содержат систематическую составляющую (обычно включающую несколько компонент) и случайный шум (ошибку), который затрудняет обнаружение регулярных компонент. Большинство методов исследования временных рядов включает различные способы фильтрации шума, позволяющие увидеть регулярную составляющую более отчетливо.

Читать еще:  Анализ оборудования предприятия

Большинство регулярных составляющих временных рядов принадлежит к двум классам: они являются либо трендом, либо сезонной составляющей. Тренд представляет собой общую систематическую линейную или нелинейную компоненту, закономерно изменяющуюся во времени. Сезонная составляющая — это периодически повторяющаяся компонента. Оба эти вида регулярных компонент часто имеются в рядах одновременно. Например, потребление завода может возрастать из года в год (тренд), но при этом они могут содержать и сезонную составляющую (например, на 30% в зимний период возрастает потребление относительно летнего периода). В табл. 1 приведено сравнение компонент, влияющих на значения временного ряда.

Таблица 1. Факторы, влияющие на значения временного ряда

Общая устойчивая долговременная тенденция

Изменения в технологии, численности населения, благосостоянии, системе ценностей

Повторяющиеся спады и подъемы, проходящие 4 фазы: пик, рецессия, депрессия, подъем

Взаимодействие множественных комбинаций факторов, влияющих на экономику

Обычно 2-10 лет с изменяющейся интенсивностью

Достаточно регулярные периодические флуктуации, происходящие в каждом 12-месячном периоде из года в год

В течение 12 месяцев (квартальные и месячные наблюдения)

Остаточная флуктация, рассматривающаяся как «сезонная с ошибкой» и остающаяся после того, как учтены систематические эффекты

Случайные вариации данных, вызванные непредвиденными событиями

Обычно короткой продолжительности и не повторяющиеся

Декомпозиция временных рядов

временной ряд сглаживание регрессионный

Основным положением, на котором базируется использование временных рядов для прогнозирования, является то, что факторы, влияющие на полученные данные, воздействовали некоторым образом на наблюдаемый процесс в прошлом и настоящем, и предполагается, что они будут действовать схожим образом и в не очень далеком будущем. Поэтому основной целью анализа временных рядов будет разложение их на составные компоненты (декомпозиция) с целью прогноза дальнейшего поведения системы и выработки рациональных управленческих решений.

Двумя простейшими моделями, в которых переменная временного ряда Y раскладывается на трендовую, циклическую, сезонную и нерегулярную компоненту, являются аддитивная модель и мультипликативная.

Модель, которая трактует каждое значение временного ряда как сумму указанных выше компонент, называется аддитивной. Согласно этой модели любое значение временного ряда представляется в виде:

где Yi, — значение временного ряда, а Ti , Ci, Si, Ii, — соответственно значения трендовой, циклической, сезонной и нерегулярной компонент в любой точке ряда.

Аддитивная модель применима в тех случаях, когда анализируемый временной ряд имеет приблизительно одинаковые изменения на протяжении всей длительности ряда.

Наиболее фундаментальной является классическая мультипликативная модель временного ряда, широко используемая при анализе ежемесячных, ежеквартальных и ежегодных данных и потому чаще всего применяемая в экономических исследованиях.

В классической мультипликативной модели временных рядов определяется, что наблюдаемое значение в любой точке временного ряда является произведением трех факторов — тренда, циклической и нерегулярной компонент (в случае короткошаговых наблюдений — четырех, здесь добавляется еще и сезонная компонента), и любое значение ряда может быть представлено в виде:

где Yi, — значение временного ряда, а Ti, Ci, Si, Ii, — соответственно значения трендовой, циклической, сезонной и нерегулярной компонент в любой точке ряда.

Анализ тренда


Сглаживание всегда включает некоторый способ локального усреднения данных, при котором несистематические компоненты взаимно погашают друг друга. Самый общий метод сглаживания — скользящее среднее, в котором каждый член ряда заменяется простым или взвешенным средним т соседних членов, где т — ширина «окна». Также для выделения тренда широко используется метод экспоненциального сглаживания.


Многие монотонные временные ряды можно хорошо описать линейной функцией. Если же имеется явная монотонная нелинейная компонента, то данные вначале следует преобразовать таким образом, чтобы устранить эту нелинейность. Чаще всего для этой цели используют логарифмическое, экспоненциальное или (не так часто) полиномиальное преобразование данных.


Метод экспоненциального сглаживания

Простая и логически ясная модель временного ряда имеет следующий вид:

Yt = b + et

где b — константа, et — случайная ошибка. Константа b относительно стабильна на каждом временном интервале, но может также медленно изменяться со временем. Один из интуитивно ясных способов выделения значения b из данных состоит в том, чтобы использовать сглаживание скользящим средним, в котором последним наблюдениям приписываются большие веса, чем предпоследним, предпоследним большие веса, чем пред-предпоследним, и т.д. Простое экспоненциальное сглаживание именно так и построено. Здесь более старым наблюдениям приписываются экспоненциально убывающие веса, при этом, в отличие от скользящего среднего, учитываются все предшествующие наблюдения ряда, а не только те, которые попали в определенное окно. Точная формула простого экспоненциального сглаживания имеет вид:

Когда эта формула применяется рекурсивно, каждое новое сглаженное значение (которое является также прогнозом) вычисляется как взвешенное среднее текущего наблюдения и сглаженного ряда. Очевидно, результат сглаживания зависит от параметра a. Если a равен 1, то предыдущие наблюдения полностью игнорируются. Если a равен 0, то игнорируются текущие наблюдения. Значения a между 0 и 1 дают промежуточные результаты. Эмпирические исследования показали, что простое экспоненциальное сглаживание весьма часто дает достаточно точный прогноз.

На практике обычно рекомендуется брать a меньше 0,30. Однако выбор a больше 0,30 иногда дает более точный прогноз. Это значит, что лучше все же оценивать оптимальное значение a по реальным данным, чем использовать общие рекомендации.

На практике оптимальный параметр сглаживания часто ищется с использованием процедуры поиска на сетке. Возможный диапазон значений параметра разбивается сеткой с определенным шагом. Например, рассматривается сетка значений от a = 0,1 до a = 0,9 с шагом 0,1. Затем выбирается такое значение a, для которого сумма квадратов (или средних квадратов) остатков (наблюдаемые значения минус прогнозы на шаг вперед) является минимальной.

Microsoft Excel располагает функцией Exponential Smoothing (Экспоненциальное сглаживание), которая обычно используется для сглаживания уровней эмпирической временного ряда на основе метода простого экспоненциального сглаживания. Для вызова этой функции необходимо на панели меню выбрать команду Tools ? Data Analysis. На экране раскроется окно Data Analysis, в котором следует выбрать значение Exponential Smoothing (Экспоненциальное сглаживание). В результате появится диалоговое окно Exponential Smoothing.

В диалоговом окне Exponential Smoothing задаются практически те же параметры, что и в рассмотренном выше диалоговом окне Moving Average.

Input Range (Входные данные) — в это поле вводится диапазон ячеек, содержащих значения исследуемого параметра.

Labels (Метки) — данный флажок опции устанавливается в том случае, если первая строка (столбец) во входном диапазоне содержит заголовок. Если заголовок отсутствует, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

Damping factor (Фактор затухания) — в это поле вводится значение выбранного коэффициента экспоненциального сглаживания а. По умолчанию принимаете значение а = 0,3.

Output options (Параметры вывода) — в этой группе, помимо указания диапазона ячеек для выходных данных в поле Output Range (Выходной диапазон), можно также потребовать автоматически построить график, для чего необходимо установить флажок опции Chart Output (Вывод графика), и рассчитать стандартные погрешности, для чего нужно установить флажок опции Standart Erroг (Стандартные погрешности).

Расчеты методом экспоненциального сглаживания:

Ссылка на основную публикацию
Adblock
detector