Volodina-vasilisa.ru

Антикризисное мышление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Корреляционный анализ используется для изучения ответ

Корреляционный анализ

экономические науки

  • Дашкина Дарья Владимировна , бакалавр, студент
  • Башкирский государственный аграрный университет
  • КОРРЕЛЯЦИОННЫЕ ПОЛЯ
  • КОРРЕЛЯЦИЯ
  • КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
  • КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Похожие материалы

Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.

В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.

Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.

При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.

При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.

Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.

Корреляционный анализ — метод, позволяющий обнаружить зависимость между несколькими случайными величинами.

Корреляционный анализ решает две основные задачи:

  • Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
  • Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.

Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.

Методами корреляционного анализа решаются следующие задачи:

  1. Взаимосвязь. Есть ли взаимосвязь между параметрами?
  2. Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
  3. Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

Корреляция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.

Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (xi, yi), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

К основным свойствам коэффициента корреляции относятся:

  1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
  2. Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p 0,70);
  3. средняя (при 0,50

Список литературы

  1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС [Текст] / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно — научных и технических дисциплин в условиях модернизации высшей школы : материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. — Уфа, 2014. — С. 11-14.
  2. Ганиева, А.М. Статистический анализ занятости и безработицы [Текст] / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 315-316.
  3. Исмагилов, Р. Р. Творческая группа — эффективная форма организации научных исследований в высшей школе [Текст] / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона : проблемы и перспективы развития : материалы научно-практической конференции / Академия наук РБ, УГАТУ. — Уфа, 1999. — С. 105-106.
  4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 62-69.
  5. Исламгулов, Д. Р. Научно-исследовательская работа студентов — важнейший элемент подготовки специалистов в аграрном вузе [Текст] / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения : сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. — Уфа, 2007. — С. 20-22.
  6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 79-84.
  8. Лубова, Т.Н. Организация самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. — Уфа, 2016. — С. 214-219.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 85-93.
  10. Саубанова, Л.М. Уровень демографической нагрузки [Текст] / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 321-322.
  11. Фахруллина, А.Р. Статистический анализ инфляции в России [Текст] / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 323-324.
  12. Фархутдинова, А.Т. Рынок труда в Республике Башкортостан в 2012 году [Электронный ресурс] / А.Т. Фархутдинова, Т.Н. Лубова // Студенческий научный форум. Материалы V Международной студенческой электронной научной конференции: электронная научная конференция (электронный сборник). Российская академия естествознания. 2013.

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Соучредители СМИ: Долганов А.А., Майоров Е.В.

Корреляционный анализ

Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Содержание

Коэффициент корреляции

Коэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике — это показатель характера изменения двух случайных величин. Коэффициент корреляции обозначается латинской буквой R и может принимать значения между -1 и +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи (при коэффициенте корреляции равном единице говорят о функциональной связи), а если ближе к 0, то слабой.

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

,

где cov обозначает ковариацию, а D — дисперсию, или, что то же самое,

,

где символ обозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

  • Неравенство Коши — Буняковского:

если принять в качестве скалярного произведения двух случайных величин ковариацию , то норма случайной величины будет равна , и следствием неравенства Коши — Буняковского будет: .

  • Коэффициент корреляции равен тогда и только тогда, когда X и Y линейно зависимы:

, где . Более того в этом случае знаки и k совпадают: .

  • Если X,Yнезависимые случайные величины, то . Обратное в общем случае неверно.

Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа — обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная, если одна переменная растёт, а вторая уменьшается, корреляция отрицательная.

Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = sin(x) и B = cos(x) , то он будет близок к нулю, т. е. зависимость между величинами отсутствует. Между тем, величины A и B очевидно связаны функционально по закону sin 2 (x) + cos 2 (x) = 1 .

Ограничения корреляционного анализа

  1. Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.
  2. Второе ограничение вытекает из гипотезы корреляционного анализа, в которую заложена линейная зависимость переменных. Во многих случаях, когда достоверно известно, что зависимость существует, корреляционный анализ может не дать результатов просто ввиду того, что зависимость нелинейна (выражена, например, в виде параболы).
  3. Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например, ввиду действия третьего фактора.

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Корреляционный анализ» в других словарях:

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — см. АНАЛИЗ КОРРЕЛЯЦИОННЫЙ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (в математической статистике) … Большой Энциклопедический словарь

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — КОРРЕЛЯЦИОННЫЙ АНАЛИЗ, раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (см. КОРРЕЛЯЦИЯ (взаимная связь … Энциклопедический словарь

Корреляционный анализ — (в экономике) [correlation analysis] ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная,… … Экономико-математический словарь

корреляционный анализ — (в психологии) (от лат. correlatio соотношение) статистический метод оценки формы, знака и тесноты связи исследуемых признаков или факторов. При определении формы связи рассматривается ее линейность или нелинейность (т. е. как в среднем… … Большая психологическая энциклопедия

корреляционный анализ — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN correlation analysis … Справочник технического переводчика

корреляционный анализ — koreliacinė analizė statusas T sritis Kūno kultūra ir sportas apibrėžtis Statistikos metodas, kuriuo įvertinami tiriamųjų asmenų, reiškinių požymiai arba veiksnių santykiai. atitikmenys: angl. correlation studies vok. Analyse der Korrelation, f;… … Sporto terminų žodynas

Корреляционный анализ — совокупность основанных на математической теории корреляции (См. Корреляция) методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. К. а. экспериментальных данных заключает в себе следующие… … Большая советская энциклопедия

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел матем. статистики, объединяющий практич. методы исследования корреляц. зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция … Большой энциклопедический политехнический словарь

Корреляционный анализ — Один из основных методов социолингвистики, целью которого является установление соотношений между языковыми явлениями и социальными параметрами. См. также: Социолингвистическая корреляция, Социолингвистическая переменная … Словарь социолингвистических терминов

Метод корреляционного анализа: пример. Корреляционный анализ — это.

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество определений термина. Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Фермеры, лесники и рыбаки

Шахтеры и работники карьеров

Производители газа, кокса и химических веществ

Изготовители стекла и керамики

Работники печей, кузнечных, литейных и прокатных станов

Работники электротехники и электроники

Инженерные и смежные профессии

Изготовители рабочей одежды

Работники пищевой, питьевой и табачной промышленности

Производители бумаги и печати

Производители других продуктов

Художники и декораторы

Водители стационарных двигателей, кранов и т. д.

Рабочие, не включенные в другие места

Работники транспорта и связи

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

Работники службы спорта и отдыха

Администраторы и менеджеры

Профессионалы, технические работники и художники

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный анализ в Excel предполагает вычисление следующих парамет­ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ [CORREL](массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию ПИРСОН (PEARSON) с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

Корреляционный анализ

Между социально-экономическими явлениями и процессами возможны два вида зависимости: функциональная и стохастическая. При функциональной зависимости имеется однозначное соответствие тех или иных параметров, характеризующих различные явления. Примеры такого рода зависимостей в социальной среде практически не встречаются.

При стохастической (вероятностной) зависимости конкретному значению зависимой переменной соответствует набор значений объясняющей переменной. Это связано, прежде всего, с тем, что на зависимую переменную оказывает влияние ряд неучтенных факторов. Кроме того, сказываются ошибки измерения переменных: вследствие случайного разброса их значения могут быть указаны лишь с определенной вероятностью.

В социально-экономической сфере приходится сталкиваться со многими явлениями, имеющими вероятностную природу. Так, число совершенных и раскрытых преступлений за фиксированный отрезок времени, число дорожно-транспортных происшествий в каком-либо регионе за определенное время — все это случайные величины. Для изучения стохастических взаимосвязей существуют специальные методы, в частности, корреляционный анализ («корреляция» — соотношение, связь между имеющимися явлениями и процессами).

Статистической (стохастической) зависимостью величины Y от нескольких переменных x1, x2, . хn называется связь, в соответствии с которой при изменением значения факторных переменных x1, x2, . хn результативная переменная Y может принимать любые значения с некоторыми вероятностями, но ее среднее значение или иные статистические (массовые) характеристики изменяются по определенному закону. Статистическая связь между различными показателями предполагает, чтокаждый из них имеет случайную вариацию индивидуальных значений относительно средней величины.

Корреляционной связью двух переменных называют частный случай статистической связи, состоящий в том, что разным значениям факторной переменной X соответствуют различные средние значения результативной переменной Y. Слово «корреляция» ввел в употребление Ф.Гальтон в конце XIXв. обозначая им соответствие (correlation), в отличие от обычной функциональной связи (relation).

Если рассматривается взаимосвязь двух переменных, в которой случайную вариацию имеет лишь один из признаков, а значения другого являются жестко детерминированными, то говорят о регрессии, а не о статистической связи. Например, при анализе динамических рядов можно измерять регрессию уровня преступности на номера лет, но нельзя говорить о корреляции между ними и применять показатели корреляции с соответствующей им интерпретацией.

Корреляционная связь между признаками может возникать тремя путями. Во‑первых, она может проявиться как причинная зависимость результативного признака (его вариации) от вариации факторного признака. Например, признак X — уровень безработицы, признак Y — уровень преступности.

Во-вторых, она может проявиться между двумя следствиями общей причины. Известен пример[1], приведенный А.А.Чупровым: если в качестве признака X взять число пожарных команд в городе, а за признак Y — сумму убытков за год в городе от пожаров, то между признаками X и Y в совокупности городов России имеется прямая корреляция. В среднем, чем больше пожарников в городе, тем больше и убытков от пожаров! Данную корреляцию нельзя интерпретировать как связь причины и следствия; оба признака — следствия общей причины — размера города.

В-третьих, корреляция возникает при взаимосвязи признаков, каждый из которых может выступать и как причина, и как следствие. Такова, например, корреляция между уровнем производительности труда и уровнем оплаты одного часа труда (тарифной ставкой). С одной стороны, чем выше производительность труда, тем выше и оплата. Но с другой стороны, установленные тарифные ставки выступают в качестве стимулирующего фактора по отношению к производительности труда. В такой системе каждый признак может выступать и в роли независимой переменной X, и в качестве зависимой переменной Y.

Первым условием возможности изучения корреляции является общее условие всякого статистического исследования: — наличие данных по достаточно большой совокупности явлений. Какое именно число явлений достаточно для анализа корреляционной связи, зависит от цели анализа, требуемой точности и надежности параметров связи, от числа факторов, корреляция с которыми изучается. Обычно считают, что число наблюдений должно быть не менее чем в 5-6, а лучше — не менее чем в 10 раз больше числа факторов[2]. При большом числе наблюдений вступает в действие закон больших чисел, обеспечивающий взаимное погашение случайных отклонений от закономерного характера исследуемой связи.

Вторым условием возможности изучения корреляционной связи служит условие, обеспечивающее достоверное выражение закономерности в средней величине для чего необходима качественная однородность исследуемой совокупности. Например, не следует объединять в одну совокупность преступления, совершаемые обычными гражданами, с преступлениями, совершаемыми лицами, отбывающими наказание в исправительно-трудовых учреждениях, поскольку указанные преступления имеют существенные отличия.

Третьим условием корреляционного анализа является необходимость подчинения распределения совокупности по результативному Y и факторному X признакам нормальному закону распределения. Это условие связано с используемым при корреляционном анализе математическим аппаратом, дающим достоверную оценку параметров корреляции только при нормальном распределении. Однако на практике это условие чаще всего выполняется приближенно, но и в этом случае получаемые результаты обладают достаточной надежностью. При значительном отклонении распределений признаков от нормальных нельзя оценивать надежность корреляции, используя параметры данного распределения или распределения Стьюдента.

В статистике линейная зависимость между двумя признаками измеряется посредством простого (выборочного) коэффициента корреляции. Величина линейной зависимости одной переменной от нескольких других измеряется коэффициентом множественной корреляции. Возможно, вычисление частного коэффициента корреляции, который измеряет линейную зависимость между двумя признаками после устранения части линейной зависимости, обусловленной связью этих переменных с другими переменными.

По формекорреляционные связи могут быть линейными (прямолинейными) и нелинейными (криволинейными), а по направлениюпрямыми (положительными) и обратными (отрицательными).

Прямая связь свидетельствует о том, что с увеличением (уменьшением) значений одного признака увеличиваются (уменьшаются) значения другого признака. При обратной связи увеличение (уменьшение) значений одного признака ведет к уменьшению (увеличению) значений другого признака.

Главная задача корреляционного анализа — измерение тесноты связи — решается путем вычисления различных коэффициентов корреляции и проверки их значимости.

Коэффициент корреляции может принимать значения при прямой связи от 0 до + 1, а при обратной — от — 1 до 0. При коэффициентах, близких к 0, считается, что статистическая линейная связь между признаками отсутствует; при абсолютных значениях коэффициентов, меньших 0,3, — связь слабая; при значениях 0,3. 0,5 — связь умеренная; при 0,5. 0,7 — связь значительная; при 0,7. 0,9 — связь сильная; если значения коэффициентов больше 0,9, то связь считается очень сильной; если коэффициенты равны +1 или -1, то говорится о функциональной связи (что практически не встречается в статистических исследованиях).

Однако такая упрощенная оценка силы связи не всегда корректна, так как степень уверенности в наличии статистической связи зависит от объема исследуемой совокупности. Чем меньше объем совокупности, тем большим должно быть значение коэффициента корреляции для принятия гипотезы о существовании зависимости между признаками. С целью количественного измерения степени уверенности в существовании линейной статистической связи между признаками введены понятия уровня значимости и пороговых (критических) значений коэффициента корреляции.

Проверка значимости полученного коэффициента корреляции состоит в сравнении расчетного значения с критическим. При данном числе измерений и задаваемом уровне значимости находится критическое значение, которое сравнивается с расчетным. Если расчетное больше критического, то связь значима, если меньше, то связь или отсутствует (а такое значение коэффициента корреляции объясняется случайными отклонениями) или выборка мала для ее выявления.

Для определения существования и величины линейной зависимости между двумя переменными X и Y необходимо осуществить две процедуры. Первая заключается в графическом отображении точек [Xi, Yi, i=1. n] на плоскость [XY].

Рис. 2. Линейная зависимость Рис. 3. Линейная зависимость

существует. не просматривается.

Полученный график (рис. 2, 3) называется диаграммой рассеяния, анализ которой позволяет сделать вывод о допустимости предположения о линейной зависимости между переменными. Если такое предположение допустимо, то необходимо выразить в количественном виде величину линейной связи. Для этого используется выборочный коэффициент корреляции:

R = ,

где: , — среднеквадратические отклонения переменных X и Y соответственно.

Однако даже при наличии сильной статистически значимой связи между двумя переменными нельзя быть полностью уверенным в их причинно-следственной обусловленности, так как могут существовать другие причины (факторы), определяющие их совместную статистическую взаимосвязь. Статистические выводы должны быть всегда обоснованы надежной теоретической концепцией.

В то же время отсутствие статистически значимой связи не говорит об отсутствии причинно-следственных отношений, а заставляет искать другие пути и средства ее выявления, если содержательная концепция и практический опыт указывают на ее возможное существование.

«Ряды динамики»

106. Укажите, какой способ обработки рядов динамики применяется для изучения сезонности производства на предприятиях лесного комплекса графическим методом, именуемым сезонной волной:
Метод приведения к одному основанию, когда за базу принимается средний уровень

107. Урожайность пшеницы в 1998 году составила 16 ц/га. Прирост урожайности в 2001 году по сравнению с 1998 составил 11,2%, а в 2002 по сравнению с 2001 урожайность составила 98,9%. Урожайность пшеницы в 2002 году = ____________________ (с точностью до 0,1 ц/га)
17,6 ц/га

108. Урожайность пшеницы в 2002 году = ____________________ (с точностью до 0,1), если известно, что прирост урожайности в 2002 году по сравнению с 1995 составил 11,2%, а ее абсолютное значение в 1995 году было равно 17,8 ц с гектара.
19,8 ц/га

109. Урожайность пшеницы в 2002 году составила 17,6 ц/га. Прирост урожайности в 2001 году по сравнению с 1997 составил 11,2%, а в 2002 по сравнению с 2001 урожайность составила 98,9%. Урожайность пшеницы в 1997 году = ____________________ (с точностью до 1 ц/га)
16,0 ц/га

«Корреляционный метод»

110. В результате проведения регрессионного анализа получают функцию, описывающую .
взаимосвязь показателей

111. Для определения тесноты связи двух качественных признаков, каждый из которых состоит только из двух групп, применяются коэффициенты:
ассоциации

112. Если уравнение регрессии между себестоимостью единицы продукции и накладными расходами выглядит следующим образом y = 10 + 0,05x, то по мере роста накладных расходов на 1 рубль себестоимость единицы продукции повышается на .
5 копеек

113. Корреляционный анализ используется для изучения .
взаимосвязи явлений

114. На наличие умеренной прямой линейной зависимости между признаками x и y указывает следующее значение коэффициента корреляции:
rxy = 0,6

115. Парный коэффициент корреляции может принимать значения:
от -1 до 1

116. Парный коэффициент корреляции показывает тесноту .
линейной зависимости между двумя признаками на фоне действия остальных, входящих в модель

117. Связь между признаками является функциональной, если значение линейного коэффициента корреляции равно __________________.
1

118. Связь является функциональной, если определенному значению факторного признака соответствует .
строго определенное значение результативного признака

«Выборочное наблюдение»

119. Если при отборе попавшая в выборку единица не возвращается в совокупность, то такой метод называется:
бесповторный отбор

120. Какой из видов несплошного наблюдения является основным, главным:
Выборочное наблюдение

Читать еще:  Сущность методов анализа
Ссылка на основную публикацию
Adblock
detector