Volodina-vasilisa.ru

Антикризисное мышление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение основной тенденции динамики показателя анализ

Методы анализа основной тенденции ряда динамики;

Основной тенденцией ряда динамики (или трендом) называ­ется устойчивое изменение уровня явления во времени, обусловлен­ное влиянием постоянно действующих факторов и свободное от слу­чайных колебаний.

В случаях, когда уровни динамического ряда непрерывно растут или непрерывно снижаются, основная тенденция ряда является оче­видной. Однако достаточно часто уровни динамических рядов пре­терпевают различные изменения (т. е. то растут, то убывают), и общая тенденция неясна. Задача статистики заключается в выявлении тен­денции в таких рядах. С этой целью ряды динамики подвергаются об­работке методами укрупнения интервалов, скользящей средней и аналитического выравнивания.

Общая тенденция развития явления во времени – это поступательное непрерывное изменение ур-ней РД за длит. Промежуток времени в опр. Направлении.

Тренд – это некот. аналит. ф-я, при пом. кот. описывают тенденцию РД.

Одна из важнейших задач статистики- определение в рядах динамики общей тенденции развития.

Основной тенденцией развития называется плавное и устойчивое изменение уровня во времени, свободное от случайных колебаний. Задача состоит в выявлении общей тенденции в изменении уровней ряда, освобожденной от действия различных факторов.

Изучение тренда включает два основных этапа:

· ряд динамики проверяется на наличие тренда;

· производится выравнивание временного ряда и непосредственно выделение тренда с экстраполяцией полученных результатов.

С этой целью ряды динамики подвергаются обработке методами укрупнение интервалов, скользящей средней и аналитического выравнивания:

1. Метод укрупнения интервалов.

Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. Этот способ основан на укрупнении периодов, к которым относятся уровни ряда динамики. Например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д.

2. Метод скользящей средней.

Выявление общей тенденции ряда динамики можно произвести путем сглаживания ряда динамики с помощью скользящей средней.

Скользящая средняя- подвижная динамическая средняя, которая рассчитывается по ряду при последовательном передвижении на один интервал, то есть сначала вычисляют средний уровень из определенного числа первых по порядку уровней ряда, затем- средний уровень из такого же числа членов, начиная со второго. Средняя как бы скользит по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий.

При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни). И так, суть метода заключается в замене абсолютных данных средними арифметическими за определенные периоды.

Скользящая средняя обладает достаточной гибкостью, но недостатком метода является укорачивание сглаженного ряда по сравнению с фактическим, что ведет к потери информации. Кроме того, скользящая средняя не дает аналитического выражения тренда.

Период скользящей может быть четным и нечетным. Практически удобнее использовать нечетный период, так как в этом случае скользящая средняя будет отнесена к середине периода скольжения. Скользящие средние с продолжительностью периода, равной 3, следующие:

; ; и т.д.

Полученные средние записываются к соответствующему срединному интервалу.

Особенность сглаживания по четному числу уровней состоит в том, что каждая из численных (например, четырехчленных) средних относится к соответствующим промежуткам между смежными периодами. Для получения значений сглаженных уровней соответствующих периодов необходимо произвести центрирование расчетных средних.

Недостатком способа сглаживания рядов динамики является то, что полученные средние не дает теоретических рядов, в основе которых лежала бы математически выраженная закономерность.

3. Метод аналитического выравнивания.

Более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. Логический анализ при выборе вида уравнения может быть основан на рассчитанных показателях динамики, а именно:

· если относительно стабильны абсолютные приросты (первые разности уровней приблизительно равны), , сглаживание может быть выполнено по прямой;

· если абсолютные приросты равномерно увеличиваются (вторые разности уровней приблизительно равны), можно принять параболу второго порядка;

· при ускоренно возрастающих или замедляющихся абсолютных приростах — параболу третьего порядка;

· при относительно стабильных темпах роста- показательную функцию.

Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.

Цель аналитического выравнивания- определение аналитической или графической зависимости. На практике по имеющемуся временному ряду задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости; линейная, параболическая и экспоненциальная.

После выяснения характера кривой развития необходимо определить ее параметры, что можно сделать различными методами:

1) решением системы уравнений по известным уровням ряда динамики;

2) методом средних значений (линейных отклонений), который заключается в следующем: ряд расчленяется на две примерно равные части, и вводятся преобразования, чтобы сумма выровненных значений в каждой части совпала с суммой фактических значений, например, в случае выравнивания прямой линии ;

3) выравниванием ряда динамики с помощью метода конечных разностей;

4) методом наименьших квадратов: это некоторый прием получения оценки детерминированной компоненты , характеризующих тренд или ряд изучаемого явления.

Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ.

Глава 7. Статистическое изучение динамики общественных явлений

7.5. Методы анализа основной тенденции развития в рядах динамики

Важным направлением в исследовании закономерностей динамики социально-экономических процессов является изучение общей тенденции развития. Для принятия эффективных управленческих решений на любом уровне необходимо обладать всей информацией об особенностях динамики изучаемого явления или процесса. Так, региональные власти должны знать, какова, например, динамика миграции населения области, республики или края, и чтобы управлять этим процессом необходимо иметь представление о том, увеличивается она или уменьшается в целом в рассматриваемый период времени. Это можно осуществить, применяя специальные методы анализа рядов динамики.

Изменения уровней временных рядов обуславливаются влиянием на изучаемое явление различных факторов, которые как правило, неоднородны по силе, направлению и времени их действия. Постоянно действующие факторы оказывают определяющее влияние и формируют в рядах динамики основную тенденцию развития. Воздействие других факторов проявляется периодически, что вызывает повторяемые во времени колебания уровней. Действия случайных (разовых) факторов отображается кратковременными изменениями уровней рядов динамики.

Поэтому всякий ряд динамики теоретически может быть представлен в виде составляющих:

1) тренд – основная тенденция развития динамического ряда (к увеличению либо снижению его уровней);

2) циклические (периодические) колебания, в том числе сезонные;

3) случайные колебания.

Под основной тенденцией развития (трендом) принято понимать достаточно плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

Читать еще:  Анализ показателей эффективности деятельности организации

Изучение тренда включает два основных этапа: на первом этапе ряд динамики проверяется на наличие тренда, а на втором производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных результатов.

Непосредственное выделение тренда может быть произведено методами укрупнения интервалов, скользящей средней или аналитического выравнивания.

1. Укрупнение интервалов. Один из наиболее простых приемов обнаружения общей тенденции развития. При этом первоначальный ряд динамики преобразуется и заменяется другим, показатели которого относятся к большим по продолжительности периодам времени. Данные по месяцам можно преобразовать в данные по кварталам, квартальные данные преобразовать годовые и т.п. – эти величины получают путем простого суммирования. При суммировании уровней или при выведении средних по укрупненным интервалам отклонения в уровнях, обусловленные случайными причинами, взаимопогашаются, сглаживаются и более ясно обнаруживается действие основных факторов изменения уровней – основная тенденция.

Например, имеются данные об объемах продаж продукции птицефабрики (тыс. руб), причем при визуальном обзоре исходной информации, явная тенденция развития непосредственно не обнаруживается:

После укрупнения интервалов и преобразования ряда тенденция развития становится очевидной:

2. Скользящая средняя. При этом методе исходные уровни ряда заменяют средними величинами, которые получают, формируя укрупненные интервалы, состоящие из одинакового числа уровней. Каждый последующий интервал формируем, постепенно сдвигаясь от начального уровня динамического ряда на один уровень.

Так, по данным вышеприведенного примера произведем следующие вычисления:

Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Интервал может быть нечетным (3, 5, 7 и т. д. точек) или четным (2, 4, 6 и т.д. точек). При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала, при четном этого делать нельзя. Поэтому при обработке ряда с четными интервалами их искусственно делают нечетными, для чего образуют ближайший больший нечетный интервал, но из крайних его уровней берут только 50 %.

Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда.

3. Аналитическое выравнивание. Основным содержанием данного метода является то, что основная тенденция развития изучаемого явления рассчитывается как функция времени. В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющийся во времени результат действия всех влияющих факторов, а отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или периодически. В результате приходят к трендовой модели:

где f(t) – уровень, определяемый тенденцией развития;

et – случайное и циклическое отклонение от тенденции.

При этом определение теоретических, т.е. расчетных уровней временного ряда производится на основе так называемой адекватной математической функции, которая наилучшим образом отображает основную тенденцию изучаемого явления.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t). На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенденции. Вид функции выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса. На данном этапе очень важно произвести качественный анализ изучаемого явления. Чтобы решить проблему подбора математической функции, по которой рассчитываются теоретические уровни тренда, необходимо изучить природу исследуемого явления или процесса. От правильности решения этой проблемы зависит обоснованность выводов о закономерностях тренда.

Чаще всего при выравнивании используются следующие зависимости:

Линейная зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.

Параболическая зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.

Экспоненциальные зависимости применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста), либо, при отсутствии такого постоянства, — устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста, цепных коэффициентов роста цепных же коэффициентов или темпов роста и т. п.).

Наилучшим методом оценки параметров (a, a1, a2, . ) можно признать метод наименьших квадратов (МНК), который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных:

В качестве примера произведем выравнивание данных о производстве зерна в России по уравнению прямой (Ŷt = a + a1 t), используя два метода. Это метод наименьших квадратов и упрощенный метод выравнивания.

При использовании метода наименьших квадратов необходимо, чтобы сумма квадратов отклонений фактических данных от выравненных была наименьшей. Для нахождения параметров а и а1, строится система нормальных уравнений, которая имеет вид:

В рядах с равноотстоящими значениями можно выбрать упрощенный способ – способ условного отсчета времени ( t ), так, чтобы Σt=0

Таблица исходных и расчетных данных

млн. т.;

млн. т.

Таким образом, уравнение прямой примет вид:

Подставив в это уравнение значение t, получим выровненные теоретические значения Yt. Они показаны в последней колонке таблицы, причем общий объем производства зерна остался неизменным.

Пояснения к таблице.

Первые две колонки – ряд динамики, подвергаемый выравниванию, дополняется колонкой, в которой показана система отсчета времени «t«. Причем эта система выбирается таким образом, чтобы t = 0.

Если число уровней ряда четное, то вместо нуля в центре мы поставили бы единицу с противоположными знаками у двух уровней, находящихся в середине ряда. Тогда разница между годами составляла бы две единицы времени и общий вид системы был бы таким (например, для ряда из 6 уровней):

Методы анализа тенденций рядов динамики

Одной из важнейших задач статистики является определение в рядах динамики общей тенденции развития явления. На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.

Основная тенденция (тренд) – изменение, определяющее общее направление развития, это систематическая составляющая долговременного действия.

Задача – выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. Методы выявления тренда:

1) Метод укрупнения интервалов основан на укрупнении периодов времени, к которым относятся уровни ряда динамики (одновременно уменьшается количество интервалов). Средняя, исчисленная по укрупненным интервалам, позволяет выявить направление и характер (ускорение или замедление роста) основной тенденции развития, в то время как слишком малые интервалы между наблюдениями приводят к появлению ненужных деталей в динамике процесса, засоряющих общую тенденцию.

Различные направления изменений уровней ряда по отдельным месяцам затрудняют выводы об основной тенденции производства. Если соответствующие месячные уровни объединить в квартальные и вычислить среднемесячный выпуск продукции по кварталам, т.е. укрупнить интервалы, то решение задачи упрощается.

После укрупнения интервалов основная тенденция роста производства стала очевидной: 5,23

Сглаженный ряд урожайности по трехлетиям короче фактического на один член ряда в начале и в конце, по пятилетиям – на два члена в начале и в конце ряда. Он меньше, чем фактический, подвержен колебаниям из-за случайных причин, и четче выражает основную тенденцию роста урожайности за изучаемый период, связанную с действием долговременно существующих причин и условий развития.

Читать еще:  Метод прямого сравнительного анализа

Укрупнение интервалов и метод скользящей средней дают возможность определить лишь общую тенденцию развития явления, более или менее освобожденную от случайных или волнообразных колебаний. Получить обобщенную статистическую модель тренда посредством этих методов нельзя.

Рис. 8.2. Эмпирические и сглаженные уровни ряда динамики

3) Аналитическое выравнивание ряда динамики используется для того, чтобы дать количественную модель, выражающую основную тенденцию изменения уровней ряда динамики во времени.

Общая тенденция развития рассчитывается как функция времени:

где ŷt – уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени t.

Определение теоретических (расчетных) уровней ŷt производится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимирует) основную тенденцию ряда динамики.

Простейшими моделями, выражающими тенденцию развития, являются (где a, a1 – параметры уравнения; t – время):

Показательная функция . (6.18)

Расчет параметров функции обычно производится методом наименьших квадратов.Выравнивание ряда динамики заключается в замене фактических уровней yi плавно изменяющимися уровнями ŷt, наилучшим образом аппроксимирующими статистические данные.

Выравнивание по прямой используется в тех случаях, когда абсолютные приросты практически постоянны, т.е. когда уровни изменяются в арифметической прогрессии.

Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометрической прогрессии, т.е. когда цепные коэффициенты роста практически постоянны.

Выравнивание ряда динамики по прямойŷt=a + a1·t. Параметры a, a1 согласно МНК находятся решением следующей системы нормальных уравнений:

(6.20)

где yфактические (эмпирические) уровни ряда;

tвремя (порядковый номер периода или момента времени).

S t = 0, так что система нормальных уравнений (8.20) принимает вид:

(6.21)

Отсюда можно выразить коэффициенты регрессии:

; (6.22)

. (8.23)

Если расчеты выполнены правильно, то S y = S ŷt.

Пример

Для выравнивания ряда из примера 8.3 используем линейную трендовую модель – уравнение прямой ŷt=a + a1·t. n = 10. Расчет уравнения регрессии выполним в табличной форме.

S y =153,4; S y·t = 6,8; S t 2 = 330.

= 15,34; = 0,021.

Ряды динамики в статистике

9.3. Методы анализа основной тенденции в рядах динамики

Комплексный анализ динамических рядов, как правило, включает не только расчет характеристик интенсивности изменения уровней ряда при переходе от одного момента или промежутка времени к другому (абсолютных приростов, коэффициентов и темпов роста и прироста), а также нахождение обобщенных средних характеристик (среднего уровня ряда, средних темпов роста и прироста), но и выявление основных закономерностей в развитии динамического ряда. Определение тенденции развития, построение модели, описывающей изменение явления во времени, прогнозирование явления — все это важнейшие задачи при изучении динамических рядов экономических и социальных показателей.

На формирование уровней динамического ряда влияет множество различных факторов, которые по характеру воздействия можно объединить в три группы:

  1. действующие долговременно и определяющие основную тенденцию развития явления;
  2. действующие периодически — сезонные и циклические колебания;
  3. вызывающие случайные колебания уровней динамического ряда.

Соответственно, для анализа закономерности изменения уровней ряда динамики во времени применяют следующую модель:

где Тt — основная тенденция ряда ( тренд );

St — циклические (в частности, сезонные) колебания;

еt — случайные колебания.

В аддитивной модели ряд динамики представлен как сумма перечисленных компонент [yt = Tt + St + et], в мультипликативной модели — как их произведение []. В дальнейшем будем исходить из предположения мультипликативной формы связи между компонентами ряда динамики.

Тенденцией развития, или трендом, называется сформировавшееся направление развития явления во времени под воздействием постоянно действующих факторов. Судить о наличии тенденции в динамическом ряду на основе его визуального анализа можно лишь тогда, когда четко видно, что при переходе от одного момента времени к другому уровни ряда возрастают или убывают. Однако, как правило, нельзя сразу сказать, есть или нет тенденция в изменении уровней динамического ряда. Для этого применяются специальные методы.

К методам выявления основной тенденции развития динамического ряда (Тt) относятся:

  • метод укрупнения интервалов;
  • метод скользящей средней;
  • аналитическое выравнивание динамических рядов.

Рассмотрим их подробнее.

9.3.1. Метод укрупнения интервалов

Применение метода укрупнения интервалов рассмотрим на основе данных табл. 9.13.

Как видим, визуальный анализ данных не позволяет сделать какие-либо выводы о наличии тенденции в данном динамическом ряду: в отдельные месяцы, например, в феврале, марте, августе, октябре и декабре, поставки товаров снижались по сравнению с предыдущими месяцами, в остальные периоды — возрастали.

Применим к исходным данным метод укрупнения интервалов, образовав новый динамический ряд с более крупными временными периодами — кварталами, и рассчитаем средний месячный объем поставок в каждом квартале (табл. 9.14).

Итак, по новым, более крупным интервалам уже четко видно, что значения исследуемого признака во временном аспекте имеют тенденцию к возрастанию.

Применение рассмотренного метода в основном ограничивается теми ситуациями, когда исходные данные относятся к дням, неделям или месяцам года, так как значения исследуемого признака по более мелким временным интервалам больше подвержены случайным колебаниям. Если временные промежутки представляют собой годы, то укрупнение интервалов становится малоэффективным.

9.3.2. Метод скользящей средней

Следующий способ выявления тенденции в динамическом ряду основан на расчете и анализе так называемых скользящих (подвижных) средних.

Скользящими (подвижными) средними называются средние арифметические значения показателя, исчисленные по новым m-членным укрупненным интервалам. Правила построения этих интервалов следующие. Первый из интервалов включает первые m уровней ряда динамики, второй интервал образуется путем исключения первого члена укрупненного интервала и замены его последующим элементом ряда динамики, имеющим номер (m + 1) и т.д. — до включения в интервал последнего уровня ряда. По вычисленным подобным путем подвижным средним делают вывод о существовании тенденции в динамическом ряду.

Если в качестве укрупненного интервала используют период в три месяца, то первая подвижная трехчленная средняя вычисляется как средняя арифметическая из данных за январь, февраль и март, вторая — как средняя арифметическая из данных за февраль, март, апрель и т.д. Значения подвижных средних относят к конкретному временному периоду, соответствующему середине укрупненного интервала.

Проведем сглаживание ряда методом скользящей средней по трем членам (табл. 9.15).

В нашем примере первая скользящая средняя относится к февралю, вторая — к марту и т. д.

В тех случаях, когда сглаживание проводится по четному числу уровней ряда динамики, середина временного интервала сглаживания будет находиться между двумя моментами (периодами) времени. Например, если проводить сглаживание по четырем членам, середина первого интервала будет находиться между февралем и мартом, второго интервала — между мартом и апрелем и т.д. В таких случаях возникает необходимость центрирования полученных результатов для отнесения сглаженных значений показателя к конкретным периодам или моментам времени. Расчет центрированных скользящих средних может проводиться в два этапа:

  1. определение скользящих сумм и нецентрированных скользящих средних по четному числу уровней ряда динамики;
  2. исчисление центрированных скользящих средних из двух смежных ранее исчисленных нецентрированных скользящих средних и отнесение их к соответствующим периодам или моментам времени.
Читать еще:  План факт анализ исполнения бюджета пример

Методика расчета центрированных скользящих средних показана ниже (табл. 9.16).

9.3.3. Аналитическое сглаживание (выравнивание) рядов динамики

Аналитическое выравнивание динамических рядов — это нахождение определенной модели (уравнения тренда), которая математически описывает тенденцию развития явления во времени. При этом уровни показателя рассматриваются только как функция от времени. В отличие от рассмотренных выше методов, таких, как укрупнение интервалов, скользящих средних, направленных в основном на то, чтобы ответить на вопрос: есть ли тенденция в динамическом ряду или нет, и определить ее направление, аналитическое выравнивание позволяет более точно установить характер развития явления, а главное — описать его математически, уловить все нюансы и направления развития и, что, пожалуй, наиболее интересно, использовать в дальнейшем полученную модель для прогнозирования.

Первым шагом в проведении аналитического выравнивания является выбор вида математической функции, которую предполагается использовать в качестве модели тренда. При этом можно руководствоваться формой кривой, полученной на основе отображения на графике эмпирических данных. Схема построения графика достаточно проста: по оси абсцисс откладываются временные периоды (даты), по оси ординат — значения уровней динамического ряда.

При анализе рядов динамики в качестве линии тренда чаще всего используются следующие функции:

Методы выявления основной тенденции (тренда) в рядах динамики

При анализе рядов динамики необходимо решить одну из важнейших задач статистики – определить основную тенденцию развития (тренд).

Основная тенденция развития (тренд ряда динамики) – это общее направление в изменении уров­ней ряда.

Уровни ряда динамики формируются под влиянием многих факторов, которые неоднородны по силе, направлению и времени действия.

Среди действующих факторов выделяются факторы:

§ основные (главные) – определяют закономерность (тенденцию) развития;

§ случайные – вызывают колебания уровней.

Таким образом, при анализе рядов динамики различают три компоненты:

основная тенденция развития, или тренд (изменения, определяющие общее направление развития);

периодически повторяющиеся колебания (сезонные колебания);

случайные колебания (возникают под влиянием внешних факторов и вызывают колебания уровней относительно тренда).

При изучении рядов динамики необходимо разделить эти компоненты и выявить основную закономерность развития явления, т.е. выявить общую тенденцию в изменении уровней, освобожденную от действия случайных факторов. Выявление основной тенденции развития в статистике называ­ется выравниванием ряда динамики.

Таким образом, при изучении основной тенденции ряда динамики решаются следующие задачи:

1. выявление основной тенденции развития;

2. измерение выявленного тренда, т.е. его обобщающая количественная оценка.

Эти задачи решаются с помощью следующих методов выравнивания (сглаживания) рядов динамики:

§ метод укрупнения интервалов;

§ метод скользящей средней (механическоесглаживание);

§ метод аналитического выравнивания.

В этих методах при обработке вместо фактических уровней ряда определяются расчетные уровни, освобожденные от действия случайных факторов. В результате уменьшается колеблемость уровней. Они становятся как бы «выровненными», «сглаженными» по отношению к исходным данным.

Метод укрупнения интервалов – основан на укрупнении периодов времени, к которым относятся уровни ряда. Происходит переход от перво­начального ряда к ряду с временными промежутками. Уровни нового ряда получаются путем суммирования уровней исходного ряда, либо путем расчета средних величин из этих уровней. Например, месячные данные заменяют кварталь­ными, квартальные – годовыми и т.д. В результате от­клонения в уровнях исходного ряда, возникающие под действием случай­ных причина, сглаживаются. Более четко прослеживается основная тенденция. Обнаруживается дей­ствие основных факторов, определяющих эту тенденцию.

Замечание. Если ряд является моментным или уровни вы­ражены относительной (средней) величиной, то суммирование уровней не имеет смысла. Тогда по укрупненным интервалам рас­считывают средние показатели.

При использовании этого метода число уровней ряда существенно сокращается. Не учитывает­ся изменение уровней внутри укрупненных интервалов. Поэтому для более детальной характеристики тенденции используют выравнивание ряда с помощью скользящей (подвижной) средней.

Метод скользящей средней– последовательный расчет средних величин постепенно охватывающих последующие периоды времени. Состоит в замене абсолютных данных средними арифметическими величинами за отдельные периоды. Расчет средних ведется способом скольжения: последова­тельно смещают начало отсчета на единицу времени, т.е. посте­пенно исключают из интервала первые уровни и включают после­дующие. В результате получается средняя, относящаяся к середине укрупненного интервала.

Например, трехлетняя скользящая средняя имеет вид:

§ для первого интервала —

§ для второго интервала —

§ для третьего интервала — и т.д.

В результате сглаживания получается ряд динамики, количе­ство уровней которого меньше, чем у исходного. Фактические уровни заменяются расчетными, которые имеют меньшую колеблемость. Случайные колебания погашаются, и основная тенденция выражается в виде плавной линии.

Таким образом, методы укрупнения интервалов и скользящей средней позволяют выявить тренд, но не помогают его измерить. В этом случае применяется метод аналитического выравнивания, который позволяет измерить тренд, т.е. дать его обобщенную статистическую оценку.

Метод аналитического выравнивания –наиболее эффективный метод выявления основной тенденции. Заключается в построении аналитической функции, характеризующей зависимость уровней ряда от времени . При этом фактические (эмпирические) уровни ряда заменяются теоретическими , которые рассчитаны на основе математической функции. По сути, эти уровни рассчитываются по определенному уравнению, принятому за математическую модель тренда.

Каждый фактический уровень можно рассматривать как сумму двух составляющих:

систематическая составляющая, отражающая тренд и выкраденная определенным уравнением;

случайная величина, вызывающая колебания уровней вокруг тренда.

Задачи аналитического выравнивания:

§ определение на основе фактических данных вида функции , наиболее адекватно отражающей тенденцию ряда;

§ нахождение параметров указанной функции (уравнения) по фактическим (эмпирическим) данным;

§ расчет теоретических (выровненных) уровней по найденному уравнению.

Определение теоретических (расчетных) уровней производится на основе, так называемой, адекватной математической функции. Она должна наилучшим образом отразить основную тенденцию ряда динамики.

Проблемой, требующей своего решения при при­менении этого метода, является под­бор математической функции, по которой рассчитываются те­оретические уровни тренда.

От правильности решения данной проблемы зависят выводы о закономерностях тренда изучае­мого явления. Если выбранный тип математической функции адекватен основной тенденции развития, то мо­дель тренда может иметь практическое применение при изучении сезонных колебаний, прогнозировании и других целях.

Аналитическое выравнивание может быть осуществлено по любому рациональному многочлену. Выбор функции определяется характером динамики развития конкретного явления.

Наиболее приемлемой для выравнивания является функция, соответствующая тенденции основных показателей динамики (абсолютный прирост, темпы роста и прироста).

Выбор вида уравнения зависит от показателей динамики:

1) равномерное развитие — если относительно стабильны абсолютные приросты const (пер­вые разности уровней приблизительно равны), то сглаживание мо­жет быть выполнено попрямой:

,

где и — параметры уравнения; t – обозначение времени.

Параметр — коэффициентом регрессии, опреде­ляющий направление развития. Если > 0, то уровни ряда равномерно возрастают; если 0 происходит ускорение раз­вития, а при 0 ускорение возрастает, а при а3

Ссылка на основную публикацию
Adblock
detector