Volodina-vasilisa.ru

Антикризисное мышление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Типовая задача по корреляционно регрессионному анализу

2. Понятие корреляции и регрессии. Цели и задачи корреляционно-регрессионного анализа

Сложность экономических процессов и явлений состоит в том, что любой результат (показатель, зависимая переменная) зависит от причин (факторов, независимых переменных). Для экономических систем характерно, что число причин или условий, практически может быть неограниченно большим. Для изучения причинно-следственных связей используется аппарат Корреляционно-регрессионного анализа.

Корреляционный анализ используется для изучения связей между показателями, имеющих стохастический характер. Известно, что уровень каждого экономического показателя формируется под влиянием множества факторов и условий и в зависимости от сочетания этих условий меняется величина показателя. У стохастического характера связей между показателями наблюдается явление, когда одному и тому же значению одного из показателей соотвествует несколько значений другого показателя.

Корреляционно-регрессионный анализ используется для достижения следующих целей:

1. Выявить степень взаимосвязи между исследуемыми показателями, что позволит выбрать наиболее существенные факторы.

2. Выявить закон изменения результирующих показателей под влиянием выбранных факторов.

Корреляция — термин, происходящий от английского Correlation — соотношение, соответствие, взаимосвязь, взаимозависимость.

Корреляционная связь — такая связь, при которой на величину исследуемого показателя оказывают влияние множество факторов, действующих в различных направлениях одновременно или последовательно.

Регрессия (regression) — линия, вид зависимости исследуемого показателя от факторов (фактора).

Регрессионная связь — связь между одной зависимой переменной и несколькими другими, называемыми независимыми переменными, выраженная с помощью математической модели, т. е. уравнения регрессии.

В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.

Простая регрессия представляет собой модель, где среднее значение зависимой (объясняемой) переменной у рассматривается как функция одной независимой (объясняющей) переменной х, т. е. модель вида .

Множественная регрессия представляет собой модель, где среднее значение зависимой (объясняемой) переменной у рассматривается как функция нескольких независимых (объясняющих) переменных , , …, т. е. это модель вида .

Корреляционно-регрессионный анализ (КРА) используется для выполнения следующих видов работ:

    — разработка нормативов затрат труда, ресурсов на выполнение производственных заданий, численности работников и т. д.; — анализ функционирования системы и выявление резервов: позволяет установить набор факторов, оказывающих существенное влияние на показатель, измерить силу влияния факторов на показатель; — прогнозирование работы системы: расчет значений моделируемого показателя на перспективу.

    1) обнаружить зависимость в фактическом материале и установить форму связи; 2) измерить силу, или тесноту связи, т. е. степень ее приближения к функциональной; 3) получить оценки неизвестных параметров уравнения регрессии и проверить гипотезу относительно этих коэффициентов; 4) проверить адекватность модели; 5) провести интерпретацию полученных результатов.

Применение корреляционно-регрессионного анализа

В системе статистической обработки данных и аналитики часто используется сочетание методик корреляции и регрессии. Создателем корреляционно-регрессионного анализа считается Фрэнсис Гальтон, который разработал теоретическую основу методологии в 1795 году. В конце 19 века многие европейские ученые в области теории статистики углубили познания в вопросе использования количественных измерителей для отражения связей между явлениями.

Что такое корреляционно-регрессионный анализ (КРА) предприятия?

Корреляционно-регрессионный анализ (КРА) на предприятиях используется для выявления связей между несколькими факторами хозяйственной деятельности и оценки степени взаимозависимости выбранных для анализа критериев. Методика использует два алгоритма действий:

  1. Корреляция, которая направлена на построение моделей связей.
  2. Регрессия, используемая для прогнозирования событий на основе наиболее подходящей для ситуации модели связей.

Анализ проводится в несколько шагов:

  • постановка задач проведения исследования;
  • массовый сбор информации: систематизация статистических данных по конкретным показателям деятельности предприятия в динамике за несколько периодов;
  • этап создания модели связей;
  • анализ функционирования модели, оценка ее эффективности.

Для проведения КРА необходимо использовать показатели в едином измерителе, все они должны иметь числовое значение.

ОБРАТИТЕ ВНИМАНИЕ! Для достоверности данных и работоспособности модели сведения должны быть собраны за длительный отрезок времени.

Для полноты анализа надо устранить количественные ограничения на показатели модели, должно соблюдаться условие постоянной временной и территориальной структуры рассматриваемой совокупности элементов.

Где используется корреляционно-регрессионный анализ?

Основные ситуации применения КРА:

  1. Тестирование отношения между несколькими величинами: выявляется, что именно этот показатель является влияющим, а второй – зависимым.
  2. Определение связи между двумя переменными факторами без уточнения причинно-следственного блока сведений.
  3. Расчет показателя по изменению значения другого фактора.

Корреляционно-регрессионная методика анализа может применяться для подготовки данных о разных сторонах деятельности компании. В бизнесе построение моделей зависимости одного показателя от других факторов и дальнейшая эксплуатация выведенной математической формулы позволяют отслеживать оперативное изменение текущей ситуации в выбранном сегменте хозяйствования и быстро принимать управленческие решения.

Например, благодаря КРА можно постоянно отслеживать уровень рыночной стоимости предприятия. Для этого на начальных этапах проводится сбор информации о динамике изменения рыночной стоимости и статистических показателей всех возможных факторов влияния:

  • уровень выручки;
  • рентабельность;
  • размер активов;
  • сумма непогашенной дебиторской или кредиторской задолженности;
  • резерв сомнительных долгов и др.

Для каждого критерия строится модель, которая выявляет, насколько сильно фактор может влиять на рыночную стоимость бизнес-проекта. Когда все модели построены, оценивается их работоспособность и адекватность. Из комплекса данных выбирается тот тип взаимосвязей, который отвечает требованиям объективности и достоверности. На основе полученной схемы связей создается уравнение, которое позволит получать прогнозные данные об изменении рыночной стоимости при условии изменения значения конкретного фактора.

Методику можно применять при формировании ценовой политики, составлении бизнес-планов, проработке вопроса о расширении ассортиментного ряда и в других сегментах предпринимательства.

Задачи, виды и показатели корреляционно-регрессионного анализа

Задачи КРА заключаются в:

  • идентификации наиболее значимых факторов влияния на конкретный показатель деятельности предприятия;
  • количественном измерении тесноты выявленных связей между показателями;
  • определении неизвестных причин возникновения связей;
  • всесторонней оценке факторов, которые признаны наиболее важными для рассматриваемого показателя;
  • выведении формулы уравнения регрессии;
  • составлении прогноза возможного результата деятельности при изменении ключевых связанных факторов с учетом возможного влияния других факторных признаков.

КРА подразумевает использование нескольких видов корреляционных и регрессионных методов. Зависимости выявляются при помощи корреляций таких типов:

  • парная, если связь устанавливается с участием двух признаков;
  • частная – взаимосвязь оценивается между искомым показателем и одним из ключевых факторов, при этом условием задается постоянное значение комплекса других факторов (то есть числовое выражение всех остальных факторов в любых ситуациях будет приниматься за определенную неизменную величину);
  • множественная – основу исследования составляет влияние на показатель деятельности не одного фактора, а сразу нескольких критериев (двух и более).

СПРАВОЧНО! Выявленные показатели степени тесноты связей отражаются коэффициентом корреляции.

Читать еще:  Проанализировать матрицу межфакторных корреляций

На выбор коэффициента влияет шкала измерения признаков:

  1. Шкала номинальная, которая предназначена для приведения описательных характеристик объектов.
  2. Шкала ординальная нужна для вычисления степени упорядоченности объектов в привязке к одному и более признакам.
  3. Шкала количественная используется для отражения количественных значений показателей.

Регрессионный анализ пользуется методом наименьших квадратов. Регрессия может быть линейной и множественной. Линейный тип предполагает модель из связей между двумя параметрами. Например, при наличии таких двух критериев, как урожайность клубники и полив, понятно, что именно объем поступающей влаги будет влиять на объем выращенной и собранной клубники. Если полив будет чрезмерным, то урожай пропадет. Урожайность же клубники никак не может воздействовать на систему полива.

Множественная регрессия учитывает более двух факторов одновременно. В случае с клубникой при оценке ее урожайности могут использоваться факторы полива, плодородности почвы, температурного режима, отсутствия слизняков, сортовые особенности, своевременность внесения удобрений. Все перечисленные показатели в совокупности оказывают комплексное воздействие на искомое значение – урожайность ягод.

Система показателей анализа формируется критериями классификации. Например, при экстенсивном типе развития бизнеса в качестве показателей могут выступать такие факторы:

  • количество сотрудников;
  • число заключенных договоров за отчетный период;
  • посевные площади;
  • прирост поголовья скота;
  • расширение дилерской сети;
  • объем основных фондов.

При интенсивном типе развития могут применяться следующие показатели:

  • производительность труда;
  • рентабельность;
  • урожайность;
  • фондоотдача;
  • ликвидность;
  • средний объем поставок в отчетном периоде по одному договору.

Оценка

Для оценки достоверности и эффективности модели связей необходимо построить матрицу коэффициентов. Коэффициент в случае парной корреляции вычисляется по формуле:

Диапазон значений коэффициента ограничивается показателями от -1 до +1. Если итоговое значение было получено со знаком плюс, то между рассматриваемыми переменными имеется прямая связь. Если в результате расчетов значение оказалось отрицательным, то связь будет обратной, то есть при увеличении одного из показателей другой связанный с ним фактор будет уменьшаться. Пример прямой связи – увеличение посевных площадей будет способствовать росту объема собираемой с полей продукции. Пример обратной связи – увеличение посевных площадей сопровождается снижением урожайности.

Качественный аспект тесноты связи между рассматриваемыми в аналитических расчетах показателями можно оценивать, основываясь на шкале Чеддока.

В соответствии с ее нормами связь будет расцениваться как сильная при значении коэффициента корреляции по абсолютным данным величины выше 0,7. Положительный или отрицательный знак сопровождает числовое значение – неважно, ориентироваться необходимо только на число. Если коэффициент после вычислений оказался ниже 0,3, то связь можно считать слабой.

Для дальнейших этапов анализа выбираются факторы с высокой степенью связанности. Все остальные критерии, для которых установлена слабая связь, отбрасываются. На основании полученных сведений определяется вид математического уравнения регрессии. Рассчитывается численное значение оценки параметров регрессии, определяются качества полученной модели регрессии.

Задачи корреляционно-регрессионного анализа

Изучение корреляционной связи преследует две цели:

1) Определение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной.

2) Измерение тесноты связи двух признаков между собой.

Основным методом достижения первой цели является метод наименьших квадратов, разработанный К.Ф.Гауссом [10] . Он состоит в минимизации суммы квадратов отклонений фактически измеренных значений зависимой переменной Y от ее значений, вычисленных по уравнению связи с факторным признаком X.

Для измерения тесноты связи могут применяться различные показатели, основным из которых является коэффициент детерминации. Данный коэффициент вычисляется как отношение межгрупповой дисперсии результативного признака (характеризует влияние различий группировочного факторного признака на среднюю величину результативного признака) к общей дисперсии результативного признака (характеризует влияние на него всех причин и условий) и позволяет оценить влияние факторного признака на результативный.

,

где k — число групп по факторному признаку;

N — число единиц совокупности;

yi — индивидуальные значения результативного признака;

fi — частота в j-ой группе;

— средние групповые значения результативного признака;

— среднее значение результативного признака;

Корреляционный анализ позволяет с одной стороны, используя уравнение корреляционной связи, измерить зависимость между вариацией результативного признака и вариацией факторного признака, а с другой — используя меры тесноты связи, измерить долю вариации результативного признака, которая связана корреляционно с вариацией факторного признака.

К задачам, традиционно решаемым с помощью корреляционно-регрессионного метода, относятся:

1. Задача выделения важнейших факторов, влияющих на результативный признак (т.е. на вариацию его значений в совокупности). Эта задача решается в основном на базе тех или иных мер тесноты связи факторных признаков с результативным признаком.

2. Задача оценки деятельности по эффективности использования имеющихся ресурсов. Эта задача решается путем расчета для каждой единицы совокупности тех величин результативного признака, которые были бы получены при средней по совокупности эффективности использования факторов и сравнения их с фактическими результатами деятельности.

3. Задача прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков. Такая задача решается путем подстановки ожидаемых значений факторных признаков в уравнение связи и вычисления ожидаемых значений результативного признака. Приходится решать и обратную задачу — вычисление необходимых значений факторных признаков для обеспечения планового или желаемого значения результативного признака в среднем по совокупности. Эта задача обычно не имеет единственного решения в рамках данного метода и должна дополняться постановкой и решением оптимизационной задачи на нахождение наилучшего по определенному критерию варианта из множества возможных решений.

4. Задача подготовки данных, необходимых в качестве исходных для решения оптимизационных задач. Например, при разработке критериев оценки деятельности основных служб органов внутренних дел.

При решении каждой из названных задач нужно учитывать особенности и ограничения корреляционно-регрессионного метода. К числу таких особенностей относятся проблемы разделения влияния каждого из действующих факторов на результативный признак, необходимость специально обосновывать возможность причинной интерпретации уравнения как объясняющего связь между вариацией фактора и результата и некоторые другие. Следует так же помнить, что метод корреляционно-регрессионного анализа не может объяснить роли факторных признаков в создании результативного признака.

Парная линейная корреляция

Простейшей системой корреляционной связи является линейная связь между двумя признаками — парная линейная корреляция. Подобные системы встречаются в тех случаях, когда среди всех действующих факторов выделяется один важнейший, который и определяет вариацию результативного признака, а нелинейные формы связей без особого ущерба могут быть преобразованы в линейные.

Зависимость , называется уравнением регрессии y по x или линейной корреляционной зависимостью между y и x.

где – среднее значение результативного признака Y при определенном значении факторного признака X;

Читать еще:  Метод исследования экономического анализа это

b – свободный член уравнения;

а – коэффициент регрессии, характеризующий вариацию Y, приходящуюся на единицу вариации X.

Коэффициенты уравнения регрессии рассчитываются по методу наименьших квадратов.

Параметр a определяется из соотношения

,

где – среднее значение случайной величины x×y;

и – средние значения факторного и результативного признаков соответственно;

sx – среднее квадратичное отклонение признака X;

xi и yi — индивидуальные значения соответствующих признаков.

Параметр b выражают из уравнения регрессии и вычисляют, подставляя средние значения признаков X и Y и найденное значение параметра а:

.

При парной связи ее теснота измеряется с помощью коэффициента корреляции:

Соотношение между значением модуля коэффициента корреляции и теснотой связи представлено в таблице 10.

Задачи, решаемые корреляционно-регрессионным анализом

Методы стохастического факторного анализа.

Корреляционно-регрессионный анализ. Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями, не находящимися в функциональной зависимости, т.е. связь, проявляется не в каждом отдельном случае, а в определенной зависимости. С помощью парной корреляции решаются две главные задачи: оставляется модель действующих факторов (уравнение регрессии); дается количественная оценка тесноты связей (коэффициент корреляции).

Матричные модели. Матричные модели представляют собой схематическое отражение экономического явления или процесса с помощью научной абстракции. Наибольшее распространение здесь получил метод анализа «затраты-выпуск», строящийся по шахматной схеме и позволяющий в наиболее компактной форме представить взаимосвязь затрат и результатов производства.

Математическое программирование – это основное средство решения задач по оптимизации производственно-хозяйственной деятельности.

Метод исследования операций направлен на изучение экономических систем, в том числе производственно-хозяйственной деятельности предприятий, с целью определения такого сочетания структурных взаимосвязанных элементов систем, которое в наибольшей степени позволит определить наилучший экономический показатель из ряда возможных.

Теория игр как раздел исследования операций – это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Корреляционная связь (от англ. corelation — соответствие) является частным случаем статистической связи, при которой изменение среднего значения результативного признака обусловлено изменением значений факторного признака (парная корреляция) или множества факторных признаков (множественная корреляция). Для оценки тесноты связи (связь отсутствует, слабая, умеренная, сильная), определения ее направленности (связь прямая или обратная), а также формы (связь линейная, параболическая, гиперболическая, степенная и т.д.) используется корреляционно-регрессионный метод.

Корреляционно-регрессионный анализ позволяет:

1) количественно измерить тесноту, направление связи (корреляционный анализ),

2) а также установить аналитическое выражение зависимости результата от конкретных факторов при постоянстве остальных действующих на результативный признак факторных признаков (регрессионный анализ).

Таким образом, задачи корреляционного анализа сводятся к:

1) измерению тесноты известной связи между варьирующими признаками,

2) определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и

3) оценки факторов, оказывающих наибольшее влияние на результативный признак.

Задачами регрессионного анализа являются:

1) выбор типа модели (формы связи),

2) установление степени влияния независимых переменных на зависимую и

3) определение расчётных значений зависимой переменной (функции регрессии).

Решение всех названных задач приводит к необходимости комплексного использования этих методов.

Каждой основной задаче корреляционно-регрессионного анализа соответствуют его определенные приемами:

1. Измерение тесноты связи между результативным и факторным признаком (признаками). В зависимости от количества влияющих на результат факторов задача решается путем вычисления корреляционного отношения, коэффициентов парной, частной, множественной корреляции или детерминации.

2. Оценка параметров уравнения регрессии, выражающего зависимость средних значений результативного признака от значений факторного признака (признаков). Задача решается путем вычисления коэффициентов регрессии.

3. Определение важнейших факторов, влияющих на результативный признак. Задача решается путем оценки тесноты связи факторов с результативным показателем.

4. Прогнозирование возможных значений результативного признака при задаваемых значениях факторных признаков. Задача решается путем подстановки ожидаемых значений факторов в регрессионное уравнение и вычисления прогнозируемых значений результативного показателя.

Исследование корреляционных соотношений имеет огромное значение в анализе хозяйственной деятельности. Это проявляется в том, что значительно углубляется факторный анализ, устанавливаются место и роль каждого фактора в формировании уровня исследуемых показателей, углубляются знания об изучаемых явлениях, определяются закономерности их развития и как итог — точнее обосновываются планы и управленческие решения, более объективно оцениваются итоги деятельности предприятий и более полно определяются внутрихозяйственные резервы.

Корреляционно-регрессионный анализ: пример, задачи, применение. Метод корреляционно-регрессионного анализа

Корреляционно-регрессионный анализ – это один из самых распространенных методов изучения отношений между численными величинами. Его основная цель состоит в нахождении зависимости между двумя параметрами и ее степени с последующим выведением уравнения. Например, у нас есть студенты, которые сдали экзамен по математике и английскому языку. Мы можем использовать корреляцию для того, чтобы определить, влияет ли успешность сдачи одного теста на результаты по другому предмету. Что касается регрессионного анализа, то он помогает предсказать оценки по математике, исходя из баллов, набранных на экзамене по английскому языку, и наоборот.

Что такое корреляционная диаграмма?

Любой анализ начинается со сбора информации. Чем ее больше, тем точнее полученный в конечном итоге результат. В вышеприведенном примере у нас есть две дисциплины, по которым школьникам нужно сдать экзамен. Показатель успешности на них – это оценка. Корреляционно-регрессионный анализ показывает, влияет ли результат по одному предмету на баллы, набранные на втором экзамене. Для того чтобы ответить на этот вопрос, необходимо проанализировать оценки всех учеников на параллели. Но для начала нужно определиться с зависимой переменной. В данном случае это не так важно. Допустим, экзамен по математике проходил раньше. Баллы по нему – это независимая переменная (откладываются по оси абсцисс). Английский язык стоит в расписании позже. Поэтому оценки по нему – это зависимая переменная (откладываются по оси ординат). Чем больше полученный таким образом график похож на прямую линию, тем сильнее линейная корреляция между двумя избранными величинами. Это означает, что отличники в математике с большой долей вероятности получат пятерки на экзамене по английскому.

Допущения и упрощения

Метод корреляционно-регрессионного анализа предполагает нахождение причинно-следственной связи. Однако на первом этапе нужно понимать, что изменения обеих величин могут быть обусловлены какой-нибудь третьей, пока не учтенной исследователем. Также между переменными могут быть нелинейные отношения, поэтому получение коэффициента, равного нулю, это еще не конец эксперимента.

Линейная корреляция Пирсона

Данный коэффициент может использоваться при соблюдении двух условий. Первое – все значения переменных являются рациональными числами, второе – ожидается, что величины изменяются пропорционально. Данный коэффициент всегда находится в пределах между -1 и 1. Если он больше нуля, то имеет место быть прямо пропорциональная зависимость, меньше – обратно, равен – данные величины никак не влияют одна на другую. Умение вычислить данный показатель – это основы корреляционно-регрессионного анализа. Впервые данный коэффициент был разработан Карлом Пирсоном на основе идеи Френсиса Гальтона.

Читать еще:  Методы статического анализа

Свойства и предостережения

Коэффициент корреляции Пирсона является мощным инструментом, но его также нужно использовать с осторожностью. Существуют следующие предостережения в его применении:

  1. Коэффициент Пирсона показывает наличие или отсутствие линейной зависимости. Корреляционно-регрессионный анализ на этом не заканчивается, может оказаться, что переменные все-таки связаны между собой.
  2. Нужно быть осторожным в интерпретировании значения коэффициента. Можно найти корреляцию между размером ноги и уровнем IQ. Но это не означает, что один показатель определяет другой.
  3. Коэффициент Пирсона не говорит ничего о причинно-следственной связи между показателями.

Коэффициент ранговой корреляции Спирмана

Если изменение величины одного показателя приводит к увеличению или уменьшению значения другого, то это означает, что они являются связанными. Корреляционно-регрессионный анализ, пример которого будет приведен ниже, как раз и связан с такими параметрами. Ранговый коэффициент позволяет упростить расчеты.

Корреляционно-регрессионный анализ: пример

Предположим, происходит оценка эффективности деятельности десяти предприятий. У нас есть двое судей, которые выставляют им баллы. Корреляционно-регрессионный анализ предприятия в этом случае не может быть проведен на основе линейного коэффициента Пирсона. Нас не интересует взаимосвязь между оценками судей. Важны ранги предприятий по оценке судей.

Данный тип анализа имеет следующие преимущества:

  • Непараметрическая форма отношений между исследуемыми величинами.
  • Простота использования, поскольку ранги могут приписываться как в порядке возрастания значений, так и убывания.

Единственное требование данного типа анализа – это необходимость конвертации исходных данных.

Проблемы применения

В основе корреляционно-регрессионного анализа лежат следующие предположения:

  • Наблюдения считаются независимыми (пятикратное выпадение «орла» никак не влияет на результат следующего подбрасывания монетки).
  • В корреляционном анализе обе переменные рассматриваются как случайные. В регрессионном – только одна (зависимая).
  • При проверке гипотезы должно соблюдаться нормальное распределение. Изменение зависимой переменной должно быть одинаковым для каждой величины на оси абсцисс.
  • Корреляционная диаграмма – это только первая проверка гипотезы о взаимоотношениях между двумя рядами параметров, а не конечный результат анализа.

Зависимость и причинно-следственная связь

Предположим, мы вычислили коэффициент корреляции объема экспорта и ВВП. Он оказался равным единице по модулю. Провели ли мы корреляционно-регрессионный анализ до конца? Конечно же нет. Полученный результат вовсе не означает, что ВВП можно выразить через экспорт. Мы еще не доказали причинно-следственную связь между показателями. Корреляционно-регрессионный анализ – прогнозирование значений одной переменной на основе другой. Однако нужно понимать, что зачастую на параметр влияет множество факторов. Экспорт обуславливает ВВП, но не только он. Есть и другие факторы. Здесь имеет место быть и корреляция, и причинно-следственная связь, хотя и с поправкой на другие составляющие валового внутреннего продукта.

Гораздо опаснее другая ситуация. В Великобритании был проведен опрос, который показал, что дети, родители которых курили, чаще являются правонарушителями. Такой вывод сделан на основе сильной корреляции между показателя. Однако правилен ли он? Во-первых, зависимость могла быть обратной. Родители могли начать курить из-за стресса от того, что их дети постоянно попадают в переделки и нарушают закон. Во-вторых, оба параметра могут быть обусловлены третьим. Такие семьи принадлежат к низким социальным классам, для которых характерны обе проблемы. Поэтому на основе корреляции нельзя сделать вывод о наличии причинно-следственной связи.

Зачем использовать регрессионный анализ?

Корреляционная зависимость предполагает нахождение отношений между величинами. Причинно-следственная связь в этом случае остается за кадром. Задачи корреляционного и регрессионного анализа совпадают только в плане подтверждения наличия зависимости между значениями двух величин. Однако первоначально исследователь не обращает внимания на возможность причинно-следственной связи. В регрессионном анализе всегда есть две переменные, одна и которых является зависимой. Он проходит в несколько этапов:

  1. Выбор правильной модели с помощью метода наименьших квадратов.
  2. Выведение уравнения, описывающего влияние изменения независимой переменной на другую.

Например, если мы изучаем влияние возраста на рост человека, то регрессионный анализ может помочь предсказать изменения с течением лет.

Линейная и множественная регрессия

Предположим, что X и Y – это две связанные переменные. Регрессионный анализ позволяет предсказать величину одной из них на основе значений другой. Например, зрелость и возраст – это зависимые признаки. Зависимость между ними отражается с помощью линейной регрессии. Фактически можно выразить X через Y или наоборот. Но зачастую только одна из линий регрессии оказывается правильной. Успех анализа во многом зависит от правильности определения независимой переменной. Например, у нас есть два показателя: урожайность и объем выпавших осадков. Из житейского опыта становится ясно, что первое зависит от второго, а не наоборот.

Множественная регрессия позволяет рассчитать неизвестную величину на основе значений трех и более переменных. Например, урожайность риса на акр земли зависит от качества зерна, плодородности почвы, удобрений, температуры, количества осадков. Все эти параметры влияют на совокупный результат. Для упрощения модели используются следующие допущения:

  • Зависимость между независимой и влияющими на нее характеристиками является линейной.
  • Мультиколлинеарность исключена. Это означает, что зависимые переменные не связаны между собой.
  • Гомоскедастичность и нормальность рядов чисел.

Применение корреляционно-регрессионного анализа

Существует три основных случая использования данного метода:

  1. Тестирование казуальных отношений между величинами. В этом случае исследователь определяет значения переменной и выясняет, влияют ли они на изменение зависимой переменной. Например, можно дать людям разные дозы алкоголя и измерить их артериальное давление. В этом случае исследователь точно знает, что первое является причиной второго, а не наоборот. Корреляционно-регрессионный анализ позволяет обнаружить прямо-пропорциональную линейную зависимость между данными двумя переменными и вывести формулу, ее описывающую. При этом сравниваться могут величины, выраженные в совершенно различных единицах измерения.
  2. Нахождение зависимости между двумя переменными без распространения на них причинно-следственной связи. В этом случае нет разницы, какую величину исследователь назовет зависимой. При этом в реальности может оказаться, что на их обе влияет третья переменная, поэтому они и изменяются пропорционально.
  3. Расчет значений одной величины на основе другой. Он осуществляется на основе уравнения, в которое подставляются известные числа.

Таким образом корреляционный анализ предполагает нахождение связи (не причинно-следственной) между переменными, а регрессионный – ее объяснение, зачастую с помощью математической функции.

Ссылка на основную публикацию
Adblock
detector